
06/08/2020

Topics on Attention in 
Deep Learning

Hyunjik Kim

Link for slides: hyunjik11.github.io



What is Attention?
● Given source & target sets

○ for every target element, assign weight to each source element. 
○ high weight = source element is important/related to target element
○ low weight  = source element is unimportant/unrelated 

(as far as the task is concerned)
● Early works on attention focused on Machine Translation (Bhadanau '15, Luong 

15'), but also have works on vision tasks (Xu '15)

Sources for diagram & picture: https://blog.floydhub.com/attention-mechanism/ , Show, Attend and Tell (Xu '15)
Summary of history of attention in ML: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

target elements

source elements

attention weights

https://blog.floydhub.com/attention-mechanism/
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html


Attention & Self-Attention

● Attention described mathematically:

● Self-attention: keys = values = queries = sequence of inputs

● Self-attention maps N inputs to N outputs
○ These layers are stacked to form deep architectures 

e.g. Transformer (Vaswani et al., 2018)
Source for diagram: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

source: 
key, value 

target:
query 

query 
value

attention weight or

inputs outputs

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+blogspot/gJZg+(Google+AI+Blog)


1 Attentive Neural Processes

Presented @ ICLR ‘19

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo,
Ali Eslami, Dan Rosenbaum, Oriol Vinyals, Yee Whye Teh



Introduction to Neural Processes (NPs)

● We explore the use of NPs for regression.
● Given observed                  pairs (context), NPs model the function    

that maps arbitrary target input      to the target output     .
● Specifically, NPs learn a distribution over functions     (i.e. stochastic 

process) that can explain the context data well while also giving 
accurate predictions on arbitrary target inputs.



NPs

● Define:
● Learn by optimising:

with randomly chosen 

Context (C)

Target (T) input

Target (T) 
output prediction



Desirable Properties of NPs

● Linear scaling: O(n+m) for n contexts 
and m targets at train and prediction time

● Flexibility: defines a very wide family of 
distributions, where one can condition on an arbitrary number of 
contexts to predict an arbitrary number of targets.

● Order invariant in the context points 
(due to aggregation of      by taking mean)



Problems of NPs

● Signs of underfitting in NPs: inaccurate predictions at inputs of the context
● mean-aggregation step in encoder acts as a bottleneck

○ Same weight given to each context point, so difficult for decoder 
to learn which contexts are relevant for given target prediction.



● Kernel tells you which context points       are relevant for a given 
target point
○                                                , 
○        far from all             prior mean,                  prior var
○ i.e. no risk of underfitting.

● In the land of Deep Learning, we can use differentiable Attention that 
learns to attend to contexts relevant to given target

Desirable properties of GPs



Attention

● Attention is used when we want to map query        and a set of 
key-value pairs                         to output        

● It learns which                   are relevant for the given       , which is 
ultimately what we want the NP to learn.

● To help NP learn this, we can bake into NP an attention mechanism, 
and this inductive bias may e.g. help avoid underfitting, enhance 
expressiveness of NPs, and help it learn faster.



Types of Attention

● Laplace:

● Dot product:
where  

● Multihead: 



Attentive Neural Processes (ANPs)

● Computational complexity risen to O(n(n+m)) but still fast using mini-batch 
training.

1
12 2



1D Function regression on GP data

● At every training iteration, draw curve from a GP with random kernel 
hyperparameters (that change at every iteration). 

● Then choose random points on this curve as context and targets, and 
optimise mini-batch loss



1D Function regression on GP data

● At every training iteration, draw curve from a GP with random kernel 
hyperparameters (that change at every iteration). 

● Then choose random points on this curve as context and targets, and 
optimise mini-batch loss



2D Function Regression on Image data 

●     : 2D pixel coordinate,      : pixel intensity (1d for greyscale, 3d for RGB)
● At each training iteration, draw a random image and choose random pixels to 

be context and target, and optimise mini-batch loss.



2D Function Regression on Image data 
Arbitrary Pixel Inpainting



2D Function Regression on Image data 
Bottom half prediction

Using same model as previous slide (with same parameter values):



2D Function Regression on Image data 
Mapping between arbitrary resolutions

Using same ANP model as previous slide (with same parameter values):



2D Function Regression on Image data 
Visualisation of Attention

● Visualisation of Multihead Attention:
● Target is pixel with cross, context is full image
● Each colour corresponds to the weights of 

one head of attention.
● Each head has different roles, and these roles 

are consistent across different images and 
different target points.

target 

context



Varying predictions with varying Latents



NPs for Meta-Learning

- MetaFun: Meta-Learning with Iterative Functional Updates (Xu et. al, ICML 2020)

https://arxiv.org/abs/1912.02738


Conclusion

Compared to NPs, ANPs:
● Greatly improve the accuracy of context reconstructions and target 

predictions.

● Allow faster training.

● Expand the range of functions that can be modelled.

with the help of attention!



2 The Lipschitz Constant of 
Self-Attention

arXiv: https://arxiv.org/abs/2006.04710 (in submission)

Hyunjik Kim, George Papamakarios, Andriy Mnih

https://arxiv.org/abs/2006.04710


Private & ConfidentialLipschitz constant: Motivation

When are Lipschitz constants useful in Deep Learning?

● provable adversarial robustness (Cisse et al. '17, Tsuzuku et al. '18)

● generalisation bounds (Sokolić et al. '17)

● estimating Wasserstein distance (Peyré & Cuturi '18)

● stabilising training e.g. spectral normalization (Miyato et al. '18)

● parameterising a Neural ODE (Chen et al. '18)

● formulating invertible neural nets (Berhmann et al. '19) 

https://arxiv.org/abs/1704.08847
https://arxiv.org/abs/1802.04034
https://arxiv.org/abs/1605.08254
https://arxiv.org/abs/1803.00567
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1811.00995


Private & ConfidentialLipschitz constant: Definition

Given two metric spaces                and              , a function                       is 
called Lipschitz (continuous) if there exists               such that 

If                                 and is induced by a norm       , the above is equivalent 
to:

Focus on case where      is Euclidean and  

Note 

Lipschitz constant=smallest K



Private & ConfidentialLipschitz constant: Computation

The following theorem (e.g. Federer 1969) is useful for computing Lip(f):

● Hence if f is a linear map represented by matrix W, then

● Also using Lip(g∘h) ≤ Lip(g)⋅Lip(h), we can easily bound Lip(f) where f 
is a fully-connected/convolutional layer.

● How about self-attention?



Private & ConfidentialMain result 1: Dot-product self-attention is NOT 
Lipschitz

Input                       (sequence of N inputs                 ).

Single head of (dot-product) self-attention:

where 

Theorem 1 Dot-product self-attention is NOT Lipschitz under 

Proof outline Some terms of the Jacobian become arbitrarily large when  
one                and            grows to infinity. By Thm 2.1, dot-product 
self-attention is not Lipschitz under           . By equivalence of p-norms, it is 
not Lipschitz under 

each      linearly transformed by 

each output is a linear combination of the     



Private & ConfidentialMain result 2: L2 self-attention - a Lipschitz variant 

Dot-product self-attention:

When                                       => Not Lipschitz

L2 self-attention:

We can prove that the resulting L2 self-attention map is Lipschitz.

2 Changes: 1. Dot product replaced by negative squared L2 distance.

     2. Tied         and          (otherwise not Lipschitz).



Private & ConfidentialMain result 2: Lipschitz bounds on Multihead L2 self-attention

Theorem 2 Let each head of L2 self-attention be:  

And let L2 multihead self-attention (L2-MHA) be:

Then under           , we can obtain an                  bound on Lip(f):     

Under           , we have a looser                         bound. 

Proof See paper.

non-linear function of X 



Private & ConfidentialEmpirical Evidence for Asymptotic Tightness

Recall:

Hence we can obtain a lower bound on               by optimising                  wrt     . For              :  



Private & ConfidentialInvertible Residual Networks (Berhmann et al. '19)  
& Invertible Self-Attention

Lemma If f has Lipschitz constant less than 1 (i.e. 
contraction), then the mapping                                  is 
invertible.

Proof The iteration                           converges to a 
unique fixed point (by Banach's fixed point theorem), 
which is             .

- So if f are convolutions, we can divide f by an upper 
bound on Lip(f) to obtain an invertible resnet.

- Similarly if f is L2 self-attention, we can divide f by 
the upper bound on Lip(f) to obtain invertible 
self-attention.

https://arxiv.org/abs/1811.00995


Private & ConfidentialInvertibility of L2-MHA vs DP-MHA Residual Map

We check numerical invertibility of                                   via fixed point iteration for different values of c. 



Private & ConfidentialHow does expressiveness of invertible self-attention 
compare to the original self-attention?

To test this, we look at:

● validation log likelihood of the Transformer on character level language 
modelling (dataset: Penn Treebank) - i.e. task: predict next character

● making one change at a time from DP-MHA to invertible self-attention
○ Recall that the changes for MHA are:

1.Replace dot-product with negative squared L2 distance
2.Tie weights         and
3.Post-multiply each head by 
4.Divide MHA by UB(Lip(MHA))

a single Transformer Block



Private & ConfidentialValidation performance on character-level LM on PTB



Private & ConfidentialConclusions

● Showed that standard dot-product multi-head self-attention is NOT 
Lipschitz.

● Proposed L2 self-attention, an alternative formulation of multi-head 
self-attention that is Lipschitz.

● Derived upper bounds on the Lipschitz constant of L2 
self-attention, with empirical evidence for asymptotic tightness.

● Showed that Lipschitz-constrained L2 self-attention can give 
reasonable predictive performance on character-level language 
modelling on PTB, but does come at cost of expressivity.

Questions are welcome!


