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Attention: the Analogue of Kernels in Deep Learning

Kernels and Deep Learning

Some recent works @ intersection of Kernels & Deep 
Learning (DL)

● Deep Gaussian Processes (GPs) (Damianou et al., 2013)

● Deep Kernel Learning (Wilson et al., 2015)

● Convolutional GPs (Van der Wilk et al., 2017)
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● Deep Gaussian Processes (GPs) (Damianou et al., 2013)

● Deep Kernel Learning (Wilson et al., 2015)

● Convolutional GPs (Van der Wilk et al., 2017)
-> Ideas from DL incorporated into Kernel Methods
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What is Self-Attention?

● keys = values = queries = sequence of inputs

●         is the attention weight matrix
○ Analogous to kernel Gram matrix

● Self-attention maps N inputs to N outputs
○ These layers are stacked to form deep

architectures e.g. Transformer (Vaswani et al., 2018)
Source for diagram: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

inputs outputs

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+blogspot/gJZg+(Google+AI+Blog)
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Introduction to Neural Processes (NPs)

● We explore the use of NPs for regression.
● Given observed                  pairs (context), NPs model the function    

that maps arbitrary target input      to the target output     .
● Specifically, NPs learn a distribution over functions     (i.e. stochastic 

process) that can explain the context data well while also giving 
accurate predictions on arbitrary target inputs.



NPs

● Define:
● Learn by optimising:

with randomly chosen 

Context (C)

Target (T) input

Target (T) 
output prediction



Desirable Properties of NPs

● Linear scaling: O(n+m) for n contexts 
and m targets at train and prediction time

● Flexibility: defines a very wide family of 
distributions, where one can condition on an arbitrary number of 
contexts to predict an arbitrary number of targets.

● Order invariant in the context points 
(due to aggregation of      by taking mean)



Problems of NPs

● Signs of underfitting in NPs: inaccurate predictions at inputs of the context
● mean-aggregation step in encoder acts as a bottleneck

○ Same weight given to each context point, so difficult for decoder 
to learn which contexts are relevant for given target prediction.



● Kernel tells you which context points       are relevant for a given 
target point
○                                                , 
○        far from all             prior mean,                  prior var
○ i.e. no risk of underfitting.

● In the land of Deep Learning, we can use differentiable Attention that 
learns to attend to contexts relevant to given target

Desirable properties of GPs



Attention

● Attention is used when we want to map query        and a set of 
key-value pairs                         to output        

● It learns which                   are relevant for the given       , which is 
ultimately what we want the NP to learn.

● To help NP learn this, we can bake into NP an attention mechanism, 
and this inductive bias may e.g. help avoid underfitting, enhance 
expressiveness of NPs, and help it learn faster.



Types of Attention

● Laplace:

● Dot product:
where  

● Multihead: 



Attentive Neural Processes (ANPs)

● Computational complexity risen to O(n(n+m)) but still fast using mini-batch 
training.

1
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1D Function regression on GP data

● At every training iteration, draw curve from a GP with random kernel 
hyperparameters (that change at every iteration). 

● Then choose random points on this curve as context and targets, and 
optimise mini-batch loss
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2D Function Regression on Image data 

●     : 2D pixel coordinate,      : pixel intensity (1d for greyscale, 3d for RGB)
● At each training iteration, draw a random image and choose random pixels to 

be context and target, and optimise mini-batch loss.



2D Function Regression on Image data 
Arbitrary Pixel Inpainting



2D Function Regression on Image data 
Bottom half prediction

Using same model as previous slide (with same parameter values):



2D Function Regression on Image data 
Mapping between arbitrary resolutions

Using same ANP model as previous slide (with same parameter values):



2D Function Regression on Image data 
Visualisation of Attention

● Visualisation of Multihead Attention:
● Target is pixel with cross, context is full image
● Each colour corresponds to the weights of 

one head of attention.
● Each head has different roles, and these roles 

are consistent across different images and 
different target points.

target 

context



Varying predictions with varying Latents



Conclusion

Compared to NPs, ANPs:
● Greatly improve the accuracy of context reconstructions and target 

predictions.

● Allow faster training.

● Expand the range of functions that can be modelled.

with the help of attention (kernels)!


