
27/09/2019

Attention:
the Analogue of Kernels

in Deep Learning
Hyunjik Kim

Link for slides: hyunjik11.github.io

Attention: the Analogue of Kernels in Deep Learning

Kernels and Deep Learning

Some recent works @ intersection of Kernels & Deep
Learning (DL)

● Deep Gaussian Processes (GPs) (Damianou et al., 2013)

● Deep Kernel Learning (Wilson et al., 2015)

● Convolutional GPs (Van der Wilk et al., 2017)

Attention: the Analogue of Kernels in Deep Learning

Kernels and Deep Learning

Some recent works @ intersection of Kernels & Deep
Learning (DL)

● Deep Gaussian Processes (GPs) (Damianou et al., 2013)

● Deep Kernel Learning (Wilson et al., 2015)

● Convolutional GPs (Van der Wilk et al., 2017)
-> Ideas from DL incorporated into Kernel Methods

Attention: the Analogue of Kernels in Deep Learning

Kernels and Deep Learning

Ideas from Kernels incorporated in DL?

Attention: the Analogue of Kernels in Deep Learning

Kernels and Deep Learning

Ideas from Kernels incorporated in DL?

 Attention“

“

Attention: the Analogue of Kernels in Deep Learning

Kernels and Deep Learning

Ideas from Kernels incorporated in DL?

 Attention
 keys, values query -> query value

weight kernel

or

“

“

What is Self-Attention?

● keys = values = queries = sequence of inputs

● is the attention weight matrix
○ Analogous to kernel Gram matrix

● Self-attention maps N inputs to N outputs
○ These layers are stacked to form deep

architectures e.g. Transformer (Vaswani et al., 2018)
Source for diagram: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

inputs outputs

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+blogspot/gJZg+(Google+AI+Blog)

Attentive Neural Processes
Presented @ ICLR ‘19

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo,
Ali Eslami, Dan Rosenbaum, Oriol Vinyals, Yee Whye Teh

Introduction to Neural Processes (NPs)

● We explore the use of NPs for regression.
● Given observed pairs (context), NPs model the function

that maps arbitrary target input to the target output .
● Specifically, NPs learn a distribution over functions (i.e. stochastic

process) that can explain the context data well while also giving
accurate predictions on arbitrary target inputs.

NPs

● Define:
● Learn by optimising:

with randomly chosen

Context (C)

Target (T) input

Target (T)
output prediction

Desirable Properties of NPs

● Linear scaling: O(n+m) for n contexts
and m targets at train and prediction time

● Flexibility: defines a very wide family of
distributions, where one can condition on an arbitrary number of
contexts to predict an arbitrary number of targets.

● Order invariant in the context points
(due to aggregation of by taking mean)

Problems of NPs

● Signs of underfitting in NPs: inaccurate predictions at inputs of the context
● mean-aggregation step in encoder acts as a bottleneck

○ Same weight given to each context point, so difficult for decoder
to learn which contexts are relevant for given target prediction.

● Kernel tells you which context points are relevant for a given
target point
○ ,
○ far from all prior mean, prior var
○ i.e. no risk of underfitting.

● In the land of Deep Learning, we can use differentiable Attention that
learns to attend to contexts relevant to given target

Desirable properties of GPs

Attention

● Attention is used when we want to map query and a set of
key-value pairs to output

● It learns which are relevant for the given , which is
ultimately what we want the NP to learn.

● To help NP learn this, we can bake into NP an attention mechanism,
and this inductive bias may e.g. help avoid underfitting, enhance
expressiveness of NPs, and help it learn faster.

Types of Attention

● Laplace:

● Dot product:
where

● Multihead:

Attentive Neural Processes (ANPs)

● Computational complexity risen to O(n(n+m)) but still fast using mini-batch
training.

1
12 2

1D Function regression on GP data

● At every training iteration, draw curve from a GP with random kernel
hyperparameters (that change at every iteration).

● Then choose random points on this curve as context and targets, and
optimise mini-batch loss

1D Function regression on GP data

● At every training iteration, draw curve from a GP with random kernel
hyperparameters (that change at every iteration).

● Then choose random points on this curve as context and targets, and
optimise mini-batch loss

2D Function Regression on Image data

● : 2D pixel coordinate, : pixel intensity (1d for greyscale, 3d for RGB)
● At each training iteration, draw a random image and choose random pixels to

be context and target, and optimise mini-batch loss.

2D Function Regression on Image data
Arbitrary Pixel Inpainting

2D Function Regression on Image data
Bottom half prediction

Using same model as previous slide (with same parameter values):

2D Function Regression on Image data
Mapping between arbitrary resolutions

Using same ANP model as previous slide (with same parameter values):

2D Function Regression on Image data
Visualisation of Attention

● Visualisation of Multihead Attention:
● Target is pixel with cross, context is full image
● Each colour corresponds to the weights of

one head of attention.
● Each head has different roles, and these roles

are consistent across different images and
different target points.

target

context

Varying predictions with varying Latents

Conclusion

Compared to NPs, ANPs:
● Greatly improve the accuracy of context reconstructions and target

predictions.

● Allow faster training.

● Expand the range of functions that can be modelled.

with the help of attention (kernels)!

